Microarray Data Explorer
Info Raw gene Expression data is sourced from GEO, and the appropriate db package for mapping probes to gene symbols was sourced from the Bioconductor AnnotationData packages. You can read more about microarray data here.
Enter gene symbol:

Select conditions below to toggle them from the plot:

GROUP CONDITION SAMPLES
terminal ileum
GSM2160135 GSM2160137 GSM2160138
GSM2160144 GSM2160150 GSM2160151 GSM2160152 GSM2160153
GSM2160134 GSM2160139 GSM2160140
GSM2160132 GSM2160133 GSM2160136
GSM2160141 GSM2160148 GSM2160149
GSM2160142 GSM2160143 GSM2160145 GSM2160146 GSM2160147
Description

Submission Date: May 19, 2016

Summary: The early life microbiome plays important roles in host immunological and metabolic development. Because type 1 diabetes (T1D) incidence has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota that predisposes to disease. Using NOD mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and T reg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression, and T-cell populations, accelerating T1D onset in NOD mice.

GEO Accession ID: GSE81648

PMID: 27782139

Description

Submission Date: May 19, 2016

Summary: The early life microbiome plays important roles in host immunological and metabolic development. Because type 1 diabetes (T1D) incidence has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota that predisposes to disease. Using NOD mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and T reg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression, and T-cell populations, accelerating T1D onset in NOD mice.

GEO Accession ID: GSE81648

PMID: 27782139

Visualize Samples

Info Visualizations are precomputed using the Python package scanpy on the top 5000 most variable genes.

Precomputed Differential Gene Expression

Info Differential expression signatures are automatically computed using the limma R package. More options for differential expression are available to compute below.

Signatures:

Select conditions:

Control Condition

Perturbation Condition

Only conditions with at least 1 replicate are available to select

Differential Gene Expression Analysis
Info Differential expression signatures can be computed using DESeq2 or characteristic direction.
Select differential expression analysis method: