Select conditions below to toggle them from the plot:
GROUP | CONDITION | SAMPLES |
---|---|---|
Pancreatic beta cells |
GSM6733379 GSM6733380
|
|
GSM6733383 GSM6733384 GSM6733385
|
||
GSM6733381 GSM6733382
|
Submission Date: Nov 15, 2022
Summary: Type 2 diabetes (T2D) is associated with defective insulin secretion, reduced β-cell mass, and β-cell dedifferentiation. Aldehyde dehydrogenase 1 isoform A3 (ALHD1A3) serves as a marker of β-cell dedifferentiation and correlates with T2D progression. ALDH1A3-positive β-cells (A+) demonstrate impaired insulin secretion, and their numbers decrease when diabetic mice are rendered euglycemic by pair-feeding. It is unknown whether ALDH1A3 activity contributes to β-cell failure, and whether the decrease of A+ cells under pair-feeding is due to β-cell restoration. To tackle these questions, we (i) investigated the fate of A+ cells during pair-feeding by lineage-tracing, (ii) somatically ablated ALDH1A3 in diabetic β-cells, and (iii) used a novel selective ALDH1A3 inhibitor to treat diabetes. Lineage tracing and functional characterization show that A+ cells can be reconverted to functional, mature β-cells. Genetic or pharmacological inhibition of ALDH1A3 in diabetic mice lowers glycemia and increases insulin secretion. Molecular interrogation of β-cells following ALDH1A3 inhibition show a reactivation of differentiation as well as regeneration pathways through the REG gene family. We conclude that ALDH1A3 inhibition offers a therapeutic strategy for β-cell dysfunction in diabetes.
GEO Accession ID: GSE218047
PMID: 36732513
Submission Date: Nov 15, 2022
Summary: Type 2 diabetes (T2D) is associated with defective insulin secretion, reduced β-cell mass, and β-cell dedifferentiation. Aldehyde dehydrogenase 1 isoform A3 (ALHD1A3) serves as a marker of β-cell dedifferentiation and correlates with T2D progression. ALDH1A3-positive β-cells (A+) demonstrate impaired insulin secretion, and their numbers decrease when diabetic mice are rendered euglycemic by pair-feeding. It is unknown whether ALDH1A3 activity contributes to β-cell failure, and whether the decrease of A+ cells under pair-feeding is due to β-cell restoration. To tackle these questions, we (i) investigated the fate of A+ cells during pair-feeding by lineage-tracing, (ii) somatically ablated ALDH1A3 in diabetic β-cells, and (iii) used a novel selective ALDH1A3 inhibitor to treat diabetes. Lineage tracing and functional characterization show that A+ cells can be reconverted to functional, mature β-cells. Genetic or pharmacological inhibition of ALDH1A3 in diabetic mice lowers glycemia and increases insulin secretion. Molecular interrogation of β-cells following ALDH1A3 inhibition show a reactivation of differentiation as well as regeneration pathways through the REG gene family. We conclude that ALDH1A3 inhibition offers a therapeutic strategy for β-cell dysfunction in diabetes.
GEO Accession ID: GSE218047
PMID: 36732513
Signatures:
Control Condition
Perturbation Condition
Only conditions with at least 1 replicate are available to select
This pipeline enables you to analyze and visualize your bulk RNA sequencing datasets with an array of downstream analysis and visualization tools. The pipeline includes: PCA analysis, Clustergrammer interactive heatmap, library size analysis, differential gene expression analysis, enrichment analysis, and L1000 small molecule search.