Select conditions below to toggle them from the plot:
GROUP | CONDITION | SAMPLES |
---|---|---|
High-fat diet for 8 months; 129/B6 mice, age 10 months |
GSM4718414 GSM4718415 GSM4718416
|
|
GSM4718411 GSM4718412 GSM4718413
|
||
Low-fat diet for 8 months; 129/B6 mice, age 10 months |
GSM4718408 GSM4718409 GSM4718410
|
|
GSM4718405 GSM4718406 GSM4718407
|
Submission Date: Aug 10, 2020
Summary: Thrombospondin 1 (TSP1) is a multifunctional matricellular protein. Previously we have shown that TSP1 plays an important role in obesity-associated metabolic complications including inflammation, insulin resistance, cardiovascular and renal disease. However, its contribution to obesity-associated non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis (NASH) remains largely unknown and is determined in this study. High fat diet or AMLN diet-induced obese and insulin resistant NAFLD/NASH mouse models were utilized. In addition, tissue specific TSP1 knockout mice were utilized to determine the contribution of different cellular sources of obesity-induced TSP1 to NAFLD/NASH development. The data demonstrated that liver TSP1 levels were increased in experimental obese and insulin resistant NAFLD/NASH mouse models as well as in human obese NASH patients. Moreover, TSP1 deletion in hepatocyte or adipocytes did not protect mice from diet-induced NAFLD/NASH. However, myeloid/macrophage-specific TSP1 deletion protected mice against obesity-associated liver injury, accompanied by reduced liver inflammation and fibrosis. Importantly, this protection is independent of the levels of obesity and hepatic steatosis. Mechanistically, through an autocrine effect, macrophage-derived TSP1 suppressed SMPDL3B expression in liver, which amplified liver pro-inflammatory signaling (TLR4 signal pathway) and promoted NAFLD progression. Together, out data suggest that macrophage-derived TSP1 is a significant contributor to obesity-associated NAFLD/NASH development and progression and may serve as a therapeutic target for this disease.
GEO Accession ID: GSE155973
PMID: 33294831
Submission Date: Aug 10, 2020
Summary: Thrombospondin 1 (TSP1) is a multifunctional matricellular protein. Previously we have shown that TSP1 plays an important role in obesity-associated metabolic complications including inflammation, insulin resistance, cardiovascular and renal disease. However, its contribution to obesity-associated non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis (NASH) remains largely unknown and is determined in this study. High fat diet or AMLN diet-induced obese and insulin resistant NAFLD/NASH mouse models were utilized. In addition, tissue specific TSP1 knockout mice were utilized to determine the contribution of different cellular sources of obesity-induced TSP1 to NAFLD/NASH development. The data demonstrated that liver TSP1 levels were increased in experimental obese and insulin resistant NAFLD/NASH mouse models as well as in human obese NASH patients. Moreover, TSP1 deletion in hepatocyte or adipocytes did not protect mice from diet-induced NAFLD/NASH. However, myeloid/macrophage-specific TSP1 deletion protected mice against obesity-associated liver injury, accompanied by reduced liver inflammation and fibrosis. Importantly, this protection is independent of the levels of obesity and hepatic steatosis. Mechanistically, through an autocrine effect, macrophage-derived TSP1 suppressed SMPDL3B expression in liver, which amplified liver pro-inflammatory signaling (TLR4 signal pathway) and promoted NAFLD progression. Together, out data suggest that macrophage-derived TSP1 is a significant contributor to obesity-associated NAFLD/NASH development and progression and may serve as a therapeutic target for this disease.
GEO Accession ID: GSE155973
PMID: 33294831
Signatures:
Control Condition
Perturbation Condition
Only conditions with at least 1 replicate are available to select
This pipeline enables you to analyze and visualize your bulk RNA sequencing datasets with an array of downstream analysis and visualization tools. The pipeline includes: PCA analysis, Clustergrammer interactive heatmap, library size analysis, differential gene expression analysis, enrichment analysis, and L1000 small molecule search.