Gene Expression Data Explorer
Info Gene counts are sourced from ARCHS4, which provides uniform alignment of GEO samples. You can learn more about ARCHS4 and its pipeline here.
Enter gene symbol:

Select conditions below to toggle them from the plot:

GROUP CONDITION SAMPLES
Pancreatic islets
GSM3978567 GSM3978569 GSM3978571 GSM3978573 GSM3978575
GSM3978566 GSM3978568 GSM3978570 GSM3978572 GSM3978574
Description

Submission Date: Jul 25, 2019

Summary: Adaptation of the islet β-cell insulin secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we show that nutrient cues adapt insulin secretion by modulating chromatin state and transcription of genes regulating β-cell nutrient sensing and metabolism. Feeding stimulates histone acetylation at sites occupied by the chromatin-modifying enzyme Lsd1 in islets. We demonstrate that β-cell-specific deletion of Lsd1 leads to insulin hypersecretion, aberrant expression of nutrient response genes, and histone hyperacetylation, features we also observed in the db/db model of chronically increased insulin demand. Moreover, genetic variants associated with fasting glucose levels and type 2 diabetes risk are enriched at LSD1-bound sites in human islets, suggesting interindividual variation in β-cell functional adaptation in humans. These findings reveal nutrient state-dependent modulation of the islet epigenome and identify Lsd1 as a regulator of feeding-stimulated chromatin modification and adaptive insulin secretion.

GEO Accession ID: GSE134901

PMID: 36821378

Description

Submission Date: Jul 25, 2019

Summary: Adaptation of the islet β-cell insulin secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we show that nutrient cues adapt insulin secretion by modulating chromatin state and transcription of genes regulating β-cell nutrient sensing and metabolism. Feeding stimulates histone acetylation at sites occupied by the chromatin-modifying enzyme Lsd1 in islets. We demonstrate that β-cell-specific deletion of Lsd1 leads to insulin hypersecretion, aberrant expression of nutrient response genes, and histone hyperacetylation, features we also observed in the db/db model of chronically increased insulin demand. Moreover, genetic variants associated with fasting glucose levels and type 2 diabetes risk are enriched at LSD1-bound sites in human islets, suggesting interindividual variation in β-cell functional adaptation in humans. These findings reveal nutrient state-dependent modulation of the islet epigenome and identify Lsd1 as a regulator of feeding-stimulated chromatin modification and adaptive insulin secretion.

GEO Accession ID: GSE134901

PMID: 36821378

Visualize Samples

Info Visualizations are precomputed using the Python package scanpy on the top 5000 most variable genes.

Precomputed Differential Gene Expression

Info Differential expression signatures are automatically computed using the limma R package. More options for differential expression are available to compute below.

Signatures:

Select conditions:

Control Condition

Perturbation Condition

Only conditions with at least 1 replicate are available to select

Differential Gene Expression Analysis
Info Differential expression signatures can be computed using DESeq2 or characteristic direction.
Select differential expression analysis method:
Bulk RNA-seq Appyter

This pipeline enables you to analyze and visualize your bulk RNA sequencing datasets with an array of downstream analysis and visualization tools. The pipeline includes: PCA analysis, Clustergrammer interactive heatmap, library size analysis, differential gene expression analysis, enrichment analysis, and L1000 small molecule search.