Submission Date: Mar 14, 2019
Summary: Tissue resident macrophages and recruited monocyte-derived macrophages contribute to host defense but also play pathological roles in a diverse range of human diseases. Multiple macrophage phenotypes are often represented in a diseased tissue, but we lack a deep understanding of the mechanisms that control diversification. Here we use a combination of genetic, genomic, and imaging approaches to investigate the origins and epigenetic trajectories of hepatic myeloid cells during a diet-induced model of nonalcoholic steatohepatitis (NASH). We provide evidence that distinct micro-environments within the NASH liver induce strikingly divergent transcriptomes of resident and infiltrating cells. Myeloid cell diversification results from both remodeling open chromatin landscapes of recruited monocytes and altering activities of pre-existing enhancers of resident Kupffer cells. These findings provide evidence that niche-specific combinations of diseaseassociated environmental signals instruct resident and recruited macrophages to acquire distinct programs of gene expression and corresponding phenotypes.
GEO Accession ID: GSE128334
PMID: 32362324
Select conditions below to toggle them from the plot:
Cell Types | Cell Samples |
---|---|