Gene counts are sourced from ARCHS4, which provides uniform alignment of GEO samples.
You can learn more about ARCHS4 and its pipeline here.
Select conditions below to toggle them from the plot:
| GROUP | CONDITION | SAMPLES |
|---|---|---|
| Male C57BL/6J mice; High-Fat Diet; 30 deg C |
GSM3633153 GSM3633154 GSM3633155 GSM3633156 GSM3633157 GSM3633158 GSM3633159 GSM3633160
|
|
|
GSM3633193 GSM3633194 GSM3633195 GSM3633196 GSM3633197 GSM3633198 GSM3633199 GSM3633200
|
||
|
GSM3633145 GSM3633146 GSM3633147 GSM3633148 GSM3633149 GSM3633150 GSM3633151 GSM3633152
|
||
|
GSM3633201 GSM3633202 GSM3633203 GSM3633204 GSM3633205 GSM3633206 GSM3633207 GSM3633208
|
||
| Male C57BL/6J mice; control Diet; 20 deg C |
GSM3633121 GSM3633122 GSM3633123 GSM3633124 GSM3633125 GSM3633126 GSM3633127 GSM3633128
|
|
|
GSM3633161 GSM3633162 GSM3633163 GSM3633164 GSM3633165 GSM3633166 GSM3633167 GSM3633168
|
||
|
GSM3633114 GSM3633115 GSM3633113 GSM3633116 GSM3633117 GSM3633118 GSM3633119 GSM3633120
|
||
|
GSM3633169 GSM3633170 GSM3633171 GSM3633172 GSM3633173 GSM3633174 GSM3633175 GSM3633176
|
||
| Male C57BL/6J mice; control Diet; 30 deg C |
GSM3633137 GSM3633138 GSM3633139 GSM3633140 GSM3633141 GSM3633142 GSM3633143 GSM3633144
|
|
|
GSM3633177 GSM3633178 GSM3633179 GSM3633180 GSM3633181 GSM3633182 GSM3633183 GSM3633184
|
||
|
GSM3633129 GSM3633130 GSM3633131 GSM3633132 GSM3633133 GSM3633134 GSM3633135 GSM3633136
|
||
|
GSM3633185 GSM3633186 GSM3633187 GSM3633188 GSM3633189 GSM3633190 GSM3633191 GSM3633192
|
Visualizations are precomputed using the Python package scanpy on the top 5000 most variable genes.
Differential expression signatures are automatically computed using the limma R package.
More options for differential expression are available to compute below.
Signatures:
Control Condition
Perturbation Condition
Only conditions with at least 1 replicate are available to select
Differential expression signatures can be computed using DESeq2 or characteristic direction.
This pipeline enables you to analyze and visualize your bulk RNA sequencing datasets with an array of downstream analysis and visualization tools. The pipeline includes: PCA analysis, Clustergrammer interactive heatmap, library size analysis, differential gene expression analysis, enrichment analysis, and L1000 small molecule search.