Gene Expression Data Explorer
Info Gene counts are sourced from ARCHS4, which provides uniform alignment of GEO samples. You can learn more about ARCHS4 and its pipeline here.
Enter gene symbol:

Select conditions below to toggle them from the plot:

GROUP CONDITION SAMPLES
CD3+ T cells
GSM3043183 GSM3043184 GSM3043185 GSM3043186 GSM3043187 GSM3043188 GSM3043189 GSM3043190 GSM3043191 GSM3043192 GSM3043193 GSM3043194 GSM3043195 GSM3043196 GSM3043197 GSM3043198 GSM3043199 GSM3043200 GSM3043201 GSM3043202 GSM3043203 GSM3043204 GSM3043205 GSM3043206 GSM3043207 GSM3043208 GSM3043209 GSM3043210 GSM3043211 GSM3043212 GSM3043213
GSM3043165 GSM3043166 GSM3043167 GSM3043168 GSM3043169 GSM3043170 GSM3043171 GSM3043172 GSM3043173 GSM3043174 GSM3043175 GSM3043176 GSM3043177 GSM3043178 GSM3043179 GSM3043180 GSM3043181 GSM3043182
Description

Submission Date: Mar 15, 2018

Summary: This study compared the transcriptome profiling (RNA-seq) of CD3+ T cells from nondiabetic (ND) individuals and patients with type 1 diabetes (T1D).

GEO Accession ID: GSE111876

PMID: 29627388

Description

Submission Date: Mar 15, 2018

Summary: This study compared the transcriptome profiling (RNA-seq) of CD3+ T cells from nondiabetic (ND) individuals and patients with type 1 diabetes (T1D).

GEO Accession ID: GSE111876

PMID: 29627388

Visualize Samples

Info Visualizations are precomputed using the Python package scanpy on the top 5000 most variable genes.

Precomputed Differential Gene Expression

Info Differential expression signatures are automatically computed using the limma R package. More options for differential expression are available to compute below.

Signatures:

Select conditions:

Control Condition

Perturbation Condition

Only conditions with at least 1 replicate are available to select

Differential Gene Expression Analysis
Info Differential expression signatures can be computed using DESeq2 or characteristic direction.
Select differential expression analysis method:
Bulk RNA-seq Appyter

This pipeline enables you to analyze and visualize your bulk RNA sequencing datasets with an array of downstream analysis and visualization tools. The pipeline includes: PCA analysis, Clustergrammer interactive heatmap, library size analysis, differential gene expression analysis, enrichment analysis, and L1000 small molecule search.