Gene Expression Data Explorer
Info Gene counts are sourced from ARCHS4, which provides uniform alignment of GEO samples. You can learn more about ARCHS4 and its pipeline here.
Enter gene symbol:

Select conditions below to toggle them from the plot:

GROUP CONDITION SAMPLES
Human islet cells
GSM3019086 GSM3019087 GSM3019088 GSM3019089 GSM3019090
GSM3019091 GSM3019092 GSM3019093 GSM3019094 GSM3019095
Description

Submission Date: Feb 21, 2018

Summary: Cystic fibrosis (CF)-related diabetes (CFRD) is an increasingly common and devastating comorbidity of CF, affecting ~35% of adults with CF. However, the underlying causes of CFRD are unclear. Here, we examined cystic fibrosis transmembrane conductance regulator (CFTR) islet expression and whether the CFTR participates in islet endocrine cell function using murine models of b cell CFTR deletion, and normal and CF human pancreas and islets. Specific deletion of CFTR from murine b cells did not affect b cell function. In human islets, CFTR mRNA was minimally expressed, and CFTR protein/electrical activity was not detected. Isolated CF/CFRD islets demonstrated appropriate insulin and glucagon secretion with few changes in key islet-regulatory transcripts. Furthermore, ~65% of b cell area was lost in CF donors, compounded by pancreatic remodeling and immune infiltration of the islet. These results indicate that CFRD is not caused by intrinsic islet dysfunction from CFTR mutation, but rather, by b cell loss and intra-islet inflammation in the setting of a complex pleiotropic disease

GEO Accession ID: GSE110935

PMID: 29669939

Description

Submission Date: Feb 21, 2018

Summary: Cystic fibrosis (CF)-related diabetes (CFRD) is an increasingly common and devastating comorbidity of CF, affecting ~35% of adults with CF. However, the underlying causes of CFRD are unclear. Here, we examined cystic fibrosis transmembrane conductance regulator (CFTR) islet expression and whether the CFTR participates in islet endocrine cell function using murine models of b cell CFTR deletion, and normal and CF human pancreas and islets. Specific deletion of CFTR from murine b cells did not affect b cell function. In human islets, CFTR mRNA was minimally expressed, and CFTR protein/electrical activity was not detected. Isolated CF/CFRD islets demonstrated appropriate insulin and glucagon secretion with few changes in key islet-regulatory transcripts. Furthermore, ~65% of b cell area was lost in CF donors, compounded by pancreatic remodeling and immune infiltration of the islet. These results indicate that CFRD is not caused by intrinsic islet dysfunction from CFTR mutation, but rather, by b cell loss and intra-islet inflammation in the setting of a complex pleiotropic disease

GEO Accession ID: GSE110935

PMID: 29669939

Visualize Samples

Info Visualizations are precomputed using the Python package scanpy on the top 5000 most variable genes.

Precomputed Differential Gene Expression

Info Differential expression signatures are automatically computed using the limma R package. More options for differential expression are available to compute below.

Signatures:

Select conditions:

Control Condition

Perturbation Condition

Only conditions with at least 1 replicate are available to select

Differential Gene Expression Analysis
Info Differential expression signatures can be computed using DESeq2 or characteristic direction.
Select differential expression analysis method:
Bulk RNA-seq Appyter

This pipeline enables you to analyze and visualize your bulk RNA sequencing datasets with an array of downstream analysis and visualization tools. The pipeline includes: PCA analysis, Clustergrammer interactive heatmap, library size analysis, differential gene expression analysis, enrichment analysis, and L1000 small molecule search.