Select conditions below to toggle them from the plot:
GROUP | CONDITION | SAMPLES |
---|---|---|
Human islet cells |
GSM3019086 GSM3019087 GSM3019088 GSM3019089 GSM3019090
|
|
GSM3019091 GSM3019092 GSM3019093 GSM3019094 GSM3019095
|
Submission Date: Feb 21, 2018
Summary: Cystic fibrosis (CF)-related diabetes (CFRD) is an increasingly common and devastating comorbidity of CF, affecting ~35% of adults with CF. However, the underlying causes of CFRD are unclear. Here, we examined cystic fibrosis transmembrane conductance regulator (CFTR) islet expression and whether the CFTR participates in islet endocrine cell function using murine models of b cell CFTR deletion, and normal and CF human pancreas and islets. Specific deletion of CFTR from murine b cells did not affect b cell function. In human islets, CFTR mRNA was minimally expressed, and CFTR protein/electrical activity was not detected. Isolated CF/CFRD islets demonstrated appropriate insulin and glucagon secretion with few changes in key islet-regulatory transcripts. Furthermore, ~65% of b cell area was lost in CF donors, compounded by pancreatic remodeling and immune infiltration of the islet. These results indicate that CFRD is not caused by intrinsic islet dysfunction from CFTR mutation, but rather, by b cell loss and intra-islet inflammation in the setting of a complex pleiotropic disease
GEO Accession ID: GSE110935
PMID: 29669939
Submission Date: Feb 21, 2018
Summary: Cystic fibrosis (CF)-related diabetes (CFRD) is an increasingly common and devastating comorbidity of CF, affecting ~35% of adults with CF. However, the underlying causes of CFRD are unclear. Here, we examined cystic fibrosis transmembrane conductance regulator (CFTR) islet expression and whether the CFTR participates in islet endocrine cell function using murine models of b cell CFTR deletion, and normal and CF human pancreas and islets. Specific deletion of CFTR from murine b cells did not affect b cell function. In human islets, CFTR mRNA was minimally expressed, and CFTR protein/electrical activity was not detected. Isolated CF/CFRD islets demonstrated appropriate insulin and glucagon secretion with few changes in key islet-regulatory transcripts. Furthermore, ~65% of b cell area was lost in CF donors, compounded by pancreatic remodeling and immune infiltration of the islet. These results indicate that CFRD is not caused by intrinsic islet dysfunction from CFTR mutation, but rather, by b cell loss and intra-islet inflammation in the setting of a complex pleiotropic disease
GEO Accession ID: GSE110935
PMID: 29669939
Signatures:
Control Condition
Perturbation Condition
Only conditions with at least 1 replicate are available to select
This pipeline enables you to analyze and visualize your bulk RNA sequencing datasets with an array of downstream analysis and visualization tools. The pipeline includes: PCA analysis, Clustergrammer interactive heatmap, library size analysis, differential gene expression analysis, enrichment analysis, and L1000 small molecule search.